Zgadzam się, że hamowanie przeciwprądem powoduje wzrost napięcia na silnikach trakcyjnych ponad wartości nominalne, co może skutkować uszkodzeniem izolacji, zwarciem i uszkodzeniem silnika. Nie mamy danych w zakresie faktycznej wytrzymałości izolacji oraz czasu, w jakim napięcie może przekraczać wartości znamionowe. Podobnie problem może być z komutatorem, na którym pojawi się ogień okrężny. Sam współczynnik przeciążalności napięciem w warunkach polskich dla pojazdów musi być dużo większy niż 30%, ponieważ dopuszczalne napięcie w sieci trakcyjnej w stanie normalnym/jałowym może wynosić do 3600 V, a przy hamowaniu elektrodynamicznym przez inny pojazd - do 3900 V.
Natomiast zwróciłbym uwagę na inny aspekt - wpływ rezystorów rozruchowych na charakterystykę silników trakcyjnych. Pozwolę sobie tutaj na pewne uproszczenia, bo chodzi o przedstawienie skali efektu. Niech prąd ciągły silnika to 300 A przy prędkości pojazdu 50 km/h i połączeniu równoległym, gdzie przy napięciu sieci trakcyjnej 3000V mamy napięcie na pojedynczym silniku 1500V (głównie to jest generowana SEM (napięcie) w wirniku, opór silnika odpowiada tylko za ok. 3% tego napięcia).
W przypadku gdy silnik jest zasilany przeciwnie do kierunku jazdy, tak jak napisałeś - napięcie wirnika dodaje się do napięcia trakcji i równoważone spadkiem napięcia na rezystorach. Pierwszy stopień rozruchowy w EU07 to 25 omów, a więc przy prądzie 300A powoduje to spadek napięcia o 7500V. Odejmując od tego napięcie sieci trakcyjnej 3000V otrzymujemy na silnikach 7500 - 3000 = 4500 V. Daje to na jeden sinik 4500 / 4 = 1125V napięcia, co przekłada się na proporcjonalną prędkość ujemną równą stosunkowi napięć, czyli 50 km/h * 1125/1500 = 37,5 km/h. Czyli przy kierunku w tył i prędkości 37,5 km/h otrzymamy prąd 300A bez przekraczania parametrów znamionowych silnika. Granica zadziałania zabezpieczeń nadprądowych w tym pojeździe to 600 A. Przyjmując w przybliżeniu dla rozpędzania się dane wejściowe: prąd 600A przy prędkości 40 km/h i napięciu na silniku 1500 V, otrzymujemy w wyniku:
1) napięcie przy hamowaniu 600 A * 25 Ohm = 15 000 V
2) napięcie na silniku 15 000 - 3 000 = 12 000 V; 12 000 V / 4 silniki = 3000 V
3) prędkość jazdy w warunkach takiego hamowania 40 km/h * 3000/1500 = 80 km/h. Ten wynik jest zbliżony do tego, co napisałeś w swoim zgłoszeniu.
Zgadzam się, że wygenerowanie napięcia 15 000 V w lokomotywie zasilanej napięciem 3 000 V jest absurdalne, ale matematycznie poprawne. Nie mamy na chwilę obecną wiedzy w zakresie wytrzymałości izolacji i komutatora silników EU07, stąd też nie było to do tej pory symulowane. Gdybyś miał konkretne informacje, o ile można przekroczyć napięcie na silniku bez jego uszkodzenia, jest możliwość wprowadzenia zadziałania np. przekaźnika różnicowo-prądowego, który zareaguje na powstałe zwarcie i doziemienie.